The Cancer-Focused Comprehensive Geriatric Assessment: Implications, Content, and Utility

Supriya Mohile, MD, MS
Director, Geriatric Oncology
University of Rochester Medical Center
Many slides c/o Tanya M. Wildes, MD, MSCI
Assistant Professor of Medicine
Disclosures

• Consultant for Seattle Genetics
Overview

• Comprehensive Geriatric Assessment (CGA) for older cancer patients
 • How CGA is defined for cancer care
 • Utility of CGA for older patients with cancer
 • Implications of results for decision-making
 • Implications of results for CGA-driven interventions
• Collaboration throughout trajectory
 • Case study
Case Study: Advanced Prostate Cancer

- An 86-year old with metastatic prostate cancer is being seen for the first time. He was previously followed by his urologist.

- He was diagnosed with Gleason 7 prostate cancer approximately 6 years ago
 - He was started on Lupron 3 years ago
 - He was most recently treated with bicalutamide, which was discontinued several months ago due to a rising PSA

- His disease is widespread through the bones and a recent bone scan shows progression with new lesions in multiple areas

- His PSA nadired to 6 on bicalutamide, but is now 20

- His testosterone level is 10
Comprehensive Geriatric Assessment

- Function
 - Activities of Daily Living
 - Instrumental Activities of Daily Living
 - Physical function
 - Falls
- Comorbidities
- Medications
 - Polypharmacy
 - Inappropriate medications
 - START/STOPP criteria
- Psychological status
 - Depression/Anxiety
 - Cognitive impairment
 - Dementia
 - Delirium
- Incontinence
- Social support
- Vision/hearing
- Goals of Care
- Frailty
Utility of Comprehensive Geriatric Assessment in Older Adults with Cancer

Risk Prediction
- Chemotherapy Toxicity
- Survival

Cancer treatment modification
- Modification of treatment/chemotherapy
- Modification of supportive care

Intervention
- General Geriatrics vs. Cancer-focused
- Goals

c/o Tanya Wildes
Chemotherapy Toxicity:
Cancer and Aging Research Group Study

Eligibility criteria
- Age 65 or older
- Diagnosis of cancer
- To start a new chemotherapy regimen

Pre-chemo Assessment → End chemo

Chemotherapy toxicity
NCI CTCAE v3.0 (2 MDs)

Sample size: 500 patients
7 participating institutions (CARG)

Hurria J Clin Oncol 2011
Hurria J Clin Oncol 2016
Toxicity Summary

Incidence

Grade 3-5	Grade 4	Grade 3	Grade 5
All types | 53% | 50% | 12% | 12% | 0% | 2% | 43% | 42% | 6% | 2%
<table>
<thead>
<tr>
<th>Risk factor for Grade III-V Toxicity</th>
<th>OR (95% CI)</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age ≥73 years</td>
<td>1.8 (1.2-2.8)</td>
<td>2</td>
</tr>
<tr>
<td>GI/GU Cancers</td>
<td>2.1 (1.4-3.2)</td>
<td>3</td>
</tr>
<tr>
<td>Standard dose chemotherapy</td>
<td>2.1 (1.3-3.5)</td>
<td>3</td>
</tr>
<tr>
<td>Polychemotherapy</td>
<td>1.7 (1.1-2.6)</td>
<td>2</td>
</tr>
<tr>
<td>Anemia (Male < 11, female <10)</td>
<td>2.3 (1.1-4.6)</td>
<td>3</td>
</tr>
<tr>
<td>Cr Cl <34 ml/min (using Jeliffe equation/IBW)</td>
<td>2.5 (1.1-5.4)</td>
<td>3</td>
</tr>
<tr>
<td>Falls in last 6 months</td>
<td>2.5 (1.4-4.3)</td>
<td>3</td>
</tr>
<tr>
<td>Hearing impairment</td>
<td>1.7 (1.0-2.7)</td>
<td>2</td>
</tr>
<tr>
<td>Limited ability to walk 1 block</td>
<td>1.7 (1.0-2.8)</td>
<td>2</td>
</tr>
<tr>
<td>Requires assistance with medications</td>
<td>1.5 (0.7-3.2)</td>
<td>1</td>
</tr>
<tr>
<td>Decreased social activities</td>
<td>1.4 (0.9-2.0)</td>
<td>1</td>
</tr>
</tbody>
</table>

Possible score 0-25
CRASH Trial

- Chemotherapy Risk Assessment Scale for High Age Patients
- Location: USF/Moffitt and 6 community centers
- Predictors:
 - Age, sex, BMI, diastolic blood pressure, comorbidity (CIRS-G)
 - CBC, LFTs, CrCl, albumin, LDH
 - Self-reported health, ECOG PS, IADLs, GDS, MMS, MNA
 - cancer stage, marrow invasion, prior chemotherapy, tumor response, toxicity of chemo regimen (MAX2)

Extermann, Cancer 2012
CRASH Trial

• N=518 evaluable
• Median age 76 (range 70-92)
• 54.8% had stage IV cancer

• Toxicity:
 – 31.8% grade IV hematologic toxicity
 – 56% grade III/IV nonhematologic toxicity
 – Combined: 67.8%

Extermann, Cancer 2012
Table 4. The Chemotherapy Risk Assessment Scale for High-Age Patients (CRASH) Score

<table>
<thead>
<tr>
<th>Predictors</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
</table>

Hematologic scorea
- Diastolic BP \(<72\) \(\geq 72\)
- IADL \(26-29\) \(10-25\)
- LDH (if ULN 618 U/L; otherwise, 0.74 \(\text{L}^*\text{ULN}\)) \(<459\) \(\geq 459\)
- Chemotoxb \(<0.44\) \(0.45-0.57\) \(>0.57\)

Nonhematologic scorea
- ECOG PS \(0\) \(1-2\) \(3-4\)
- MMS \(30\) \(<30\)
- MNA \(28-30\) \(<28\)
- Chemotoxb \(<0.44\) \(0.45-0.57\) \(>0.57\)

Abbreviations: BP, blood pressure; Chemotox, toxicity of the chemotherapy regimen (for details, see text); ECOG PS, Eastern Cooperative Oncology Group performance status; IADL, Instrumental Activities of Daily Living; LDH, lactate dehydrogenase; MMS, Mini Mental Health Status; MNA, Mini Nutritional Assessment; ULN, upper limit of normal.

aFor the combined score, add the points from the hematologic and nonhematologic score, counting Chemotox only once.
CGA in Predicting Early Death

Table 4. Logistic Regression Model Analysis for Early Deaths (within 6 months) That Occurred for All Patients Who Received First-Line Chemotherapy (n = 339)

<table>
<thead>
<tr>
<th>Risk Factor*</th>
<th>Odds Ratio</th>
<th>95% CI</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>1</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>2.40</td>
<td>1.20 to 4.82</td>
<td>.013</td>
</tr>
<tr>
<td>Tumor stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Localized</td>
<td>1</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>Advanced</td>
<td>3.9</td>
<td>1.59 to 9.73</td>
<td>.003</td>
</tr>
<tr>
<td>Mini Nutritional Assessment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good nutrition, score > 23.5</td>
<td>1</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>At risk/poor nutrition, score ≤ 23.5</td>
<td>2.77</td>
<td>1.24 to 6.18</td>
<td>.013</td>
</tr>
<tr>
<td>Timed Get Up and Go</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No impairments (≤ 20 seconds)</td>
<td>1</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>Impaired</td>
<td>2.55</td>
<td>1.32 to 4.94</td>
<td>.006</td>
</tr>
</tbody>
</table>

NOTE: Model was adjusted for treatment site (regional and teaching hospitals vs community hospitals).
*Age, tumor site, Activities of Daily Living, Mini-Mental State, platelet count, and performance status were also included in the model but not retained because they were not significant.

Soubeyran *J Clin Oncol* 2012
Case Study: Discussion Points

• Information about the patient’s health status could help make decisions about the next steps

• Consider the following:
 • Symptoms from prostate cancer
 • Patient preferences for treatment
 • Geriatric assessment
Case Study continued

• The patient has several areas of pain that have been bothering him over the last few weeks including in the scapula and right hip
 – His pain is worse in the morning and is better when he takes acetaminophen, which he takes twice a day
 – He has tried oxycodone in the past but stopped because it caused confusion
 – He would be interested in treatment if it helps with symptoms

• Geriatric assessment reveals intact function (instrumental activities of daily living) and cognition
 – He lives in independent living and is the caregiver for his wife with dementia
 – He has a daughter who is very supportive and drives him to his appointments
 – He does not drive himself due to balance issues and uses a cane to walk; one recent fall
 – He is not depressed or anxious
 – He does not have significant nutritional issues

• He is on dialysis for the last 8 years which he is doing well with.

• He is only receiving metoprolol and a baby aspirin.
<table>
<thead>
<tr>
<th>Risk factor for Grade III-V Toxicity</th>
<th>OR (95% CI)</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age ≥73 years</td>
<td>1.8 (1.2-2.8)</td>
<td>2</td>
</tr>
<tr>
<td>GI/GU Cancers</td>
<td>2.1 (1.4-3.2)</td>
<td>3</td>
</tr>
<tr>
<td>Standard dose chemotherapy</td>
<td>2.1 (1.3-3.5)</td>
<td>3</td>
</tr>
<tr>
<td>Polychemotherapy</td>
<td>1.7 (1.1-2.6)</td>
<td>2</td>
</tr>
<tr>
<td>Anemia (Male < 11, female <10)</td>
<td>2.3 (1.1-4.6)</td>
<td>3</td>
</tr>
<tr>
<td>Cr Cl <34 ml/min (using Jelliffe equation/IBW)</td>
<td>2.5 (1.1-5.4)</td>
<td>3</td>
</tr>
<tr>
<td>Falls in last 6 months</td>
<td>2.5 (1.4-4.3)</td>
<td>3</td>
</tr>
<tr>
<td>Hearing impairment</td>
<td>1.7 (1.0-2.7)</td>
<td>2</td>
</tr>
<tr>
<td>Limited ability to walk 1 block</td>
<td>1.7 (1.0-2.8)</td>
<td>2</td>
</tr>
<tr>
<td>Requires assistance with medications</td>
<td>1.5 (0.7-3.2)</td>
<td>1</td>
</tr>
<tr>
<td>Decreased social activities</td>
<td>1.4 (0.9-2.0)</td>
<td>1</td>
</tr>
</tbody>
</table>

Possible score 0-25

Score is 20
MD-rated KPS vs. Model

Chi-square test

\[p = 0.17 \]

Chi-square test

\[p < 0.0001 \]
Utility of Comprehensive Geriatric Assessment in Older Adults with Cancer

Risk Prediction
- Surgical Complications and Chemotherapy Toxicity
- Survival

Cancer Treatment Modification
- Modification of treatment/chemotherapy
- Modification of supportive care

Intervention
- General Geriatrics vs. Cancer-focused
- Goals
Cancer Treatment Modifications Based on CGA

Oncologist assessment: Initial treatment plan

CGA

Oncologist and geriatrician: Final treatment plan

- French ASRO study
- N=217, mean age 83 years
- 40% treatment recommendation modifications
- On multivariate analysis: ADL dependence and Fried’s frailty markers associated with treatment modifications

Farcet PLOS One 2016
Example from Multiple Myeloma: Clinical trial design and clinical practice

Fit

- Age \(\leq 75 \)

AND

- All of the following:
 - Dependence in \(\leq 1 \) ADL
 - Dependence in \(\leq 2 \) IADLs
 - Charlson comorbidity index score 0-1

Intermediate Fit

- Does not meet criteria for Fit or Frail categories

Frail

- Age \(\geq 80 \)

OR

- Any 2 of the following:
 - Age 76-80
 - Dependence in \(\geq 2 \) ADLs
 - Dependence in \(\geq 3 \) IADLs
 - Charlson comorbidity index score \(\geq 2 \)

Modified chemotherapy regimens and doses

Palumbo Blood 2015
Modifying Supportive Care Based on CGA
See NCCN OAO-H for full details at nccn.org
credit to Dr. Holly Holmes

<table>
<thead>
<tr>
<th>Therapeutic class (Examples)</th>
<th>Conditions adversely affected</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corticosteroids</td>
<td>Delirium, Diabetes</td>
<td>Consider dose and duration. Use lowest possible dose.</td>
</tr>
<tr>
<td>Benzodiazepines</td>
<td>Falls, Cognitive Impairment, Delirium</td>
<td>Avoid for insomnia, agitation, delirium. Consider alternatives.</td>
</tr>
<tr>
<td>First-generation antihistamines</td>
<td>Delirium, Cognitive Impairment, Urinary retention</td>
<td>Use only when convincing benefit exists. Don’t use for sleep!</td>
</tr>
<tr>
<td>Phenothiazine antiemetics (prochlorperazine)</td>
<td>Parkinson Disease</td>
<td>Avoid</td>
</tr>
</tbody>
</table>

c/o Tanya Wildes
Case Study continued: Treatment and Supportive Care Modifications

- Avoid Steroids
- Avoid Chemotherapy
 - Due to Risk
 - Due to premedications
- Pain management
 - Patient did not want increase or change in narcotics
 - Supportive treatments for bone mets contra-indicated due to renal insufficiency
Timing: Delay Chemotherapy

Clinically Localized Disease

Rising PSA

Clinical Metastases; Noncastrate

Rising PSA: Castrate; Denosumab

Clinical Metastases: Castrate
Predocetaxel Sipuleucel-T, Abiraterone, Enzalutamide

Clinical Metastases: Castrate
1st-line Chemotherapy Docetaxel

Bone Metastases; Radium-223

Clinical Metastases: Castrate
Post-Docetaxel Cabazitaxel, Abiraterone, Enzalutamide

Enzalutamide Pre-Chemotherapy (PREVAIL)

- 1,717 pts with CRPC randomized to enzalutamide (160 mg) vs placebo

- **Enzalutamide improved overall survival**
 - HR = 0.71, \(P < .0001 \)

- Median time to chemotherapy was 28 months in the enzalutamide group vs 10.8 mths in the placebo arm

- Fatigue, constipation, joint aches more common in treatment group
 - Grade 3 or higher adverse events were reported in 43%
 - However, symptoms from prostate cancer was delayed and overall quality of life was improved for those getting treatment

Utility of Comprehensive Geriatric Assessment in Older Adults with Cancer

Risk Prediction
- Surgical Complications and Chemotherapy Toxicity
- Survival

Cancer Treatment Modification
- Modification of treatment/chemotherapy
- Modification of supportive care

Intervention
- General Geriatrics vs. Cancer-focused
- Goals
Delphi Consensus of Geriatric Oncology Experts

- 30 geriatric oncology experts
- 3 rounds of consensus
- Selecting patients for geriatric assessment
 - 93% consensus using criteria “Age ≥ 75 or younger with age-related issues or concerns”
 - 89% consensus using evidence-based screening tools such as VES-13, impaired objective physical performance, CARG and CRASH tools

Mohile et al JNCCN 2015
<table>
<thead>
<tr>
<th>Tool</th>
<th>Components</th>
<th>Data in community dwelling elderly</th>
<th>Data in oncology patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>VES-13</td>
<td>Age, self-rated health, functional capacity and physical performance</td>
<td>Score predictive of increased risk of death or functional decline over 2 years</td>
<td>Mixed results for identifying CGA impairment in different populations</td>
</tr>
<tr>
<td>Groningen Frailty Indicator</td>
<td>Mobility/physical fitness, vision/hearing, nutrition, co-morbidity, cognition, psychosocial</td>
<td>Correlation between the GI score and CGA</td>
<td>Predicts mortality in older cancer patients receiving chemotherapy</td>
</tr>
<tr>
<td>G8</td>
<td>Nutrition, mobility, cognitive deficit, polypharmacy, age, self-perceived health status</td>
<td>Derived from MNA</td>
<td>Sensitive for predicting deficits on CGA</td>
</tr>
</tbody>
</table>
Physical Performance: Interventions and Treatment Decisions

Interventions:
--Round 2: Ratings
--Round 3: **Consensus (93%)**

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Average Rating</th>
<th>IQR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Therapy</td>
<td>9.10</td>
<td>2</td>
</tr>
<tr>
<td>Exercise</td>
<td>8.39</td>
<td>1.75</td>
</tr>
<tr>
<td>Occupational Therapy</td>
<td>8.36</td>
<td>2</td>
</tr>
<tr>
<td>Home Safety Evaluation</td>
<td>8.17</td>
<td>2</td>
</tr>
</tbody>
</table>

Treatment Decisions:
--Round 2: Ratings
--Round 3: **Consensus (93%)**

<table>
<thead>
<tr>
<th>Δ To TX Plan</th>
<th>Average Rating</th>
<th>IQR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address safety during treatment</td>
<td>8.44</td>
<td>2</td>
</tr>
<tr>
<td>Modify treatment choice</td>
<td>7.96</td>
<td>2.75</td>
</tr>
<tr>
<td>Modify dosage</td>
<td>7.35</td>
<td>3</td>
</tr>
<tr>
<td>Impairment Domain</td>
<td>Assessment Options</td>
<td>Process Options</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
</tbody>
</table>
| Functional status | 1. Both ADL/IADL
2. IADL
3. Gait speed
4. ADL | 1. Physical therapy
2. Occupational therapy
3. Home safety evaluation
4. Refer to social work
5. Evaluate fall risk
6. Exercise |
| Cognition | 1. Mini Mental State Examination
2. Montreal Cognitive Assessment
3. Blessed OMC | 1. Involve caregiver
2. Assess/minimize medications
3. Delirium prevention
4. Refer to social work
5. Assess capacity and ability to consent to treatment
6. Identify health care proxy
7. Cognitive testing/neuropsychology referral |
| Social support | 1. Caregiver burden/support
2. Medical Outcomes Study survey
3. Social support from medical history | 1. Refer to social work
2. Transportation assistance
3. Nursing/home health
4. Caregiver management
5. Home safety evaluation
6. Support groups
7. Refer to psychiatry/psychology
8. Spiritual care |
| Objective physical performance | 1. Gait speed
2. Timed Up and Go
3. Short Physical Performance Battery | 1. Physical therapy
2. Exercise
3. Occupational therapy
4. Home safety evaluation
5. Rehabilitation
6. Nursing/home health |
| Psychological status: anxiety/depression | 1. Geriatric Depression Scale
2. Hospital Anxiety & Depression Scale
3. Mental Health Inventory | 1. Refer to social work
2. Counseling
3. Refer to psychiatry/psychology
4. Start medications
5. Support programs
6. Spiritual care |
| Nutrition | 1. Weight loss/gain
2. Mini Nutritional Assessment | 1. Nutrition consult
2. Make specific dietary recommendations
3. Oral care
4. Supplements
5. Refer to social work
6. Physical/occupational therapy |
Case Study: Implementing Interventions

<table>
<thead>
<tr>
<th>Domain</th>
<th>Assessment</th>
<th>Selected Examples of GA-driven interventions</th>
</tr>
</thead>
</table>
| Physical Performance | Fall history
Standardized assessment such as Short Physical Performance Battery
Assess for neuropathy | -Physical therapy consult for balance/strength training and assist device evaluation
-Home safety evaluation and modification
-LifeAlert system
-Consider chemotherapy with low risk of neuropathy
-Osteoporosis risk review |
Case Study

- **Oncology** → stage the cancer
 - Make predictions of life expectancy based on cancer
 - 2 year life expectancy with enzalutamide
 - Improved symptoms
 - Expected side effects of cancer therapy
 - Fatigue from enzalutamide

- **Geriatrics** → stage the aging
 - Make predictions of life expectancy
 - 2-5 years
 - Anticipate potential complications
 - Functional or physical performance decline
 - Evaluate whether the benefits of therapy outweigh the risks given underlying health status in light of patient’s preferences
 - Patient would like to try treatment

Geriatrics and Oncology Collaboration

- Train a geriatrics leader who is interested in working with cancer treatment specialists
 - Cancer and Aging meetings at AGS, ASCO, SIOG
 - R25 program for Nurses
- Mail self-report assessments ahead of time
- Have clinic staff help with cognitive and physical performance assessments
- Geriatrics-trained health professionals should partner with oncology teams to provide input and guide care delivery
 - Develop a clinic in the cancer center
 - Engage in tumor boards
 - Call and discuss the patient’s history with cancer treatment specialists
- Partner with local visiting nurse services to deliver interventions
 - Social work, safety evaluations, physical therapy, occupational therapy, medication review
Case Study

- Patient started enzalutamide at 50% dosing for one month
- Discussed with pharmacist: no drug interactions and no recommendations for dose reductions with renal impairment
- Assessed safety in assisted living; instituted physical activity interventions
- He did well with improvement of pain and without progression of disease for 2 years
- Stopped treatment due to progression of disease
- Discussed risks and benefits of chemotherapy and we decided against chemotherapy
- Passed away 2 months later from a complication from fistula repair
Reconciling the goals...

- Cancer focused
- Patient’s Goals
- Geriatric focused
- Palliative care
Resources

• NCCN Older Adult Oncology Guidelines
• International Society of Geriatric Oncology (siog.org)
 – Position papers
 – Geriatric Assessment Tools
• Journal of Geriatric Oncology
• ASCO website:
 https://urldefense.proofpoint.com/v2/url?u=http-3A__university.asco.org_geriatric-2Doncology&d=CwIGaQ&c=4sF48jRmVAe_CH-k9mXYXEGfSnM3bY53YSKuLUQRxhA&r=prXDLmnedlQbvED9cYrIS13t6lFAqKUXckqhTJoplP-EpPV_3sVbzR1O_em4K_yU&m=RgRnqJiCQay_N3Yw3RyOa6uK0UIAypEXTuRxO9TAYFM&s=rUs3OfgCOMzXG9W1qdoaKQnsjz28DBOx3DxTlYASJgY&e=
Medicine of the Highest Order